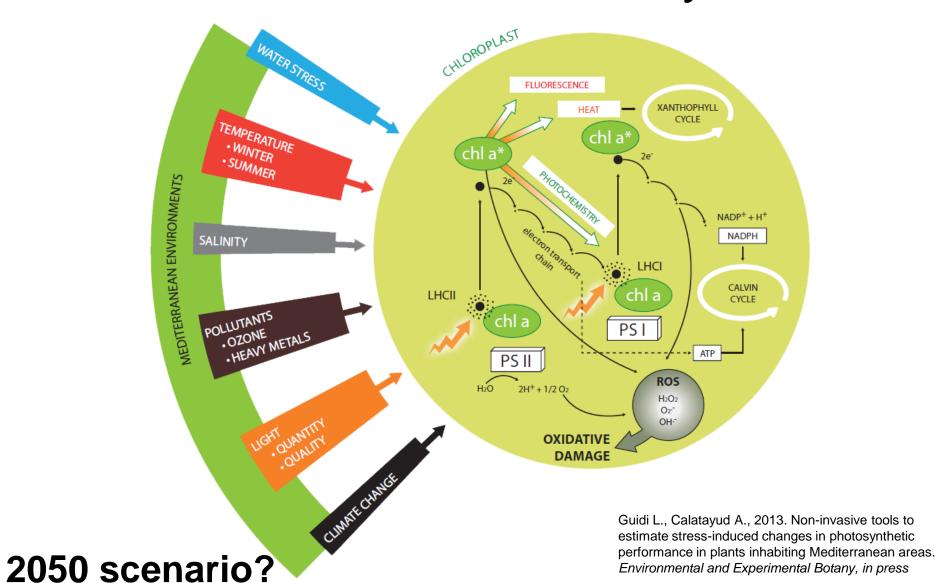


MEDSTRESS Birmensdorf, Zurich, Switzerland May 19-21, 2014


How sensitive is *Quercus cerris* to combined ozone and drought stress?

Cotrozzi L., Remorini D., Pellegrini E., Lorenzini G, Massai R., Nali C.

Department of Agriculture, Food and Environment

University of Pisa, Italy

Monitoring of Mediterranean plants health is necessary

Aim of the work

 Responses of the Mediterranean deciduous Quercus cerris to combined stress (ozone and drought) to simulate a 2050 global climate change scenario

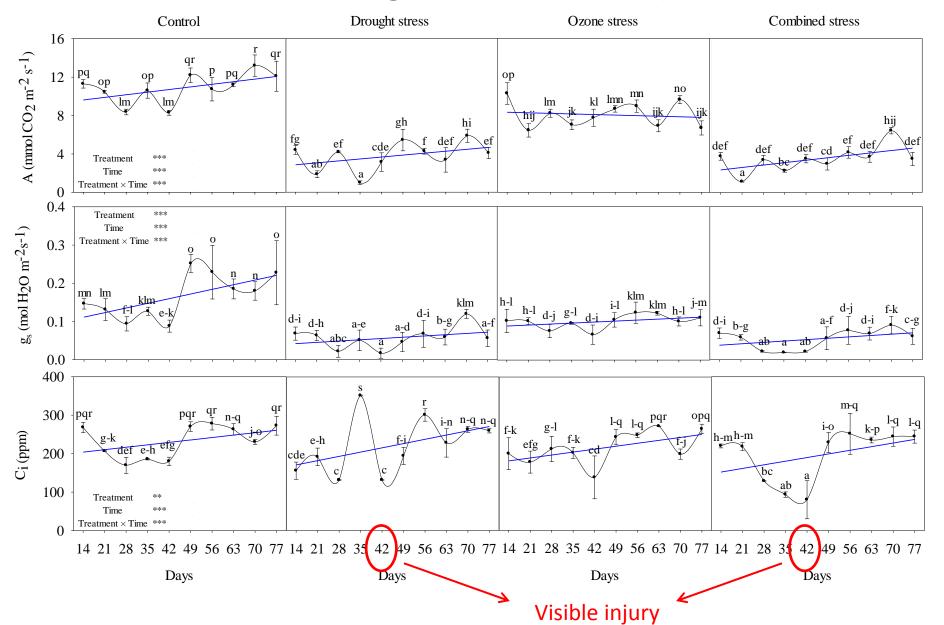
 Combination of ozone and drought = ozone and drought applied individually?

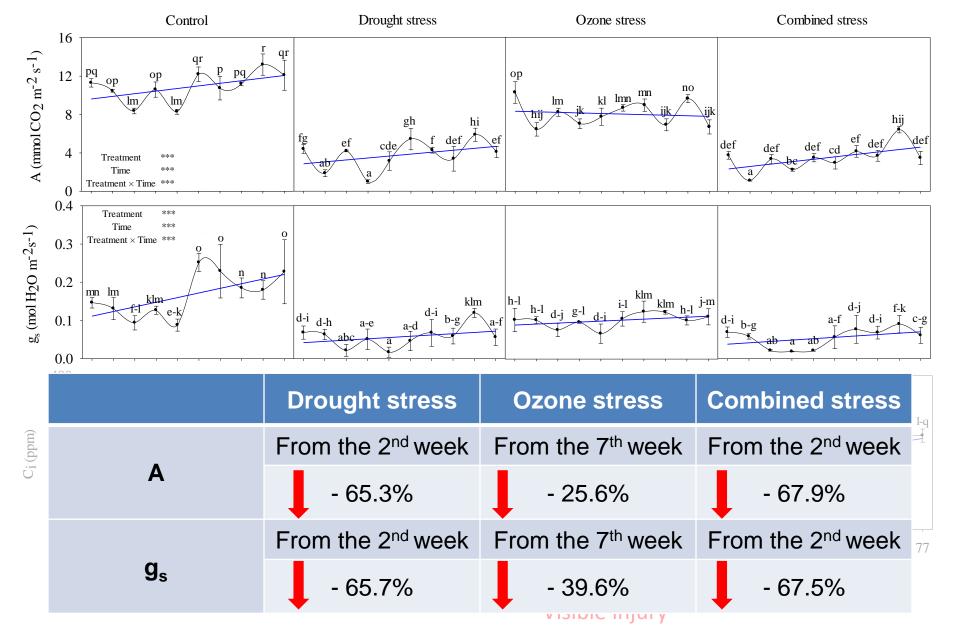
Materials and methods

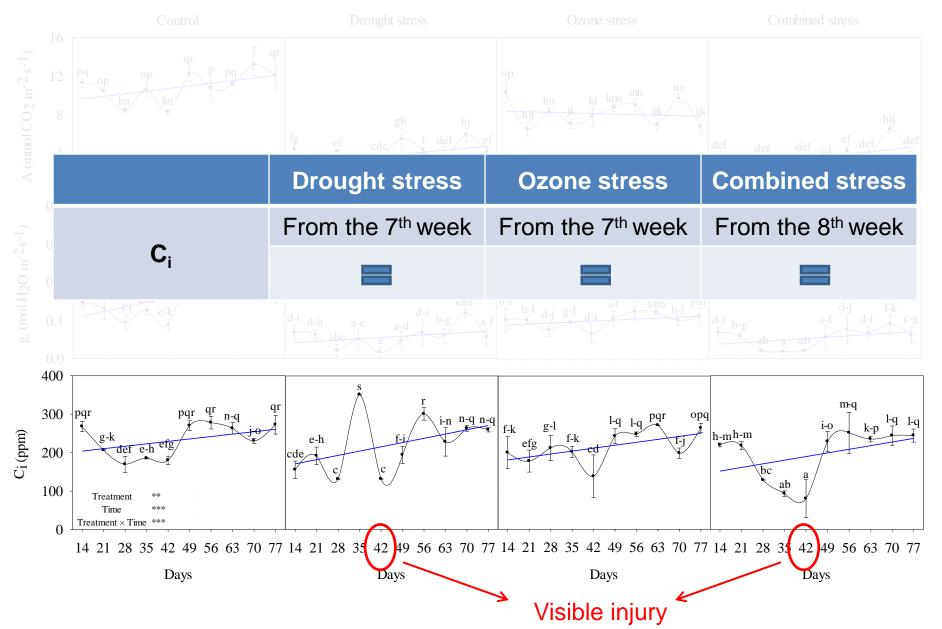
- June-August 2013 (11 weeks)
- Three-year-old seedlings
- Four exposure chambers:
 - 1. Control
 - 2. Drought stress
 - 3. Ozone stress
 - 4. Combined stress (Drought x Ozone)
- O₃ concentration: 80-100 ppb, 5 h d⁻¹
- Drought stress: 30% of effective evapotranspiration

PHYSIOLOGICAL ANALYSES:

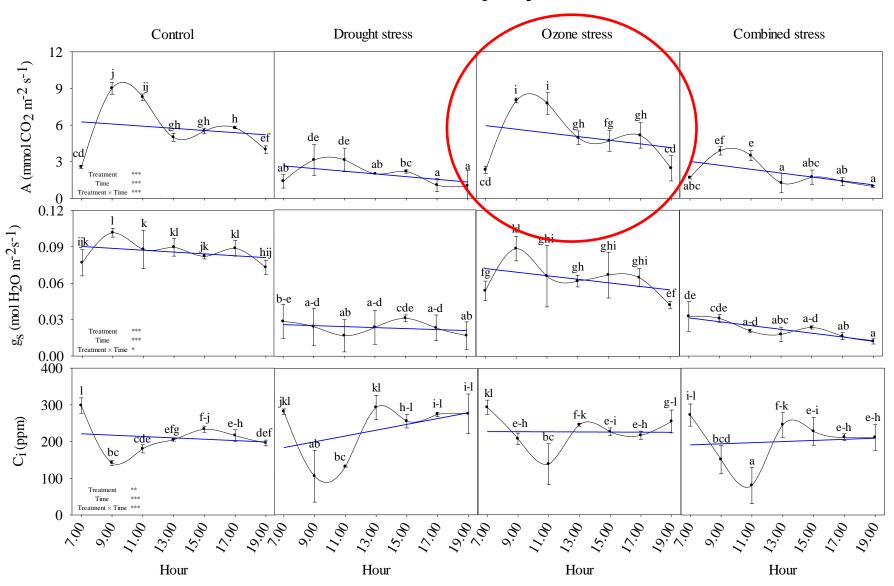
- Gas exchanges
- •Chlorophyll a fluorescence
- Pre-dawn leaf water potential
- Growth parameters and biomass

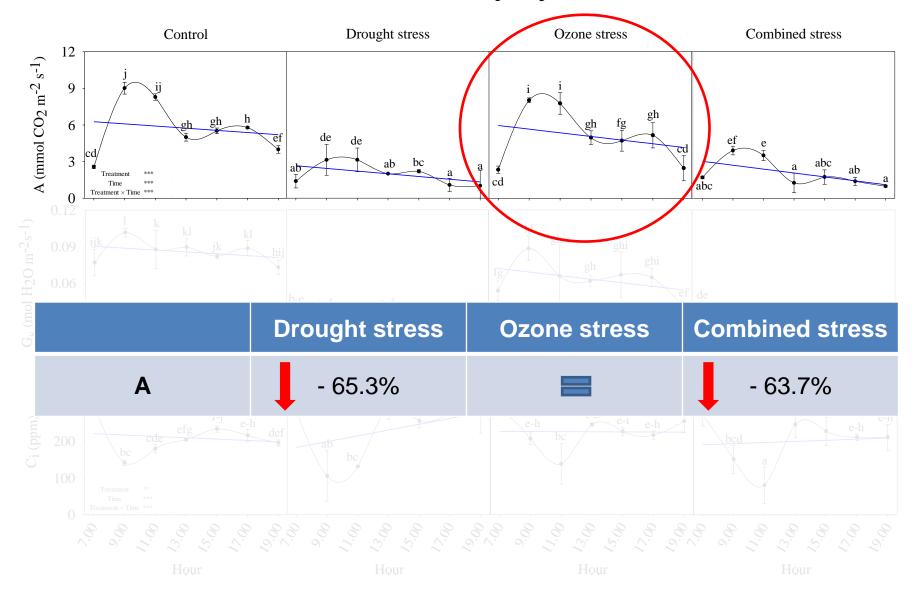


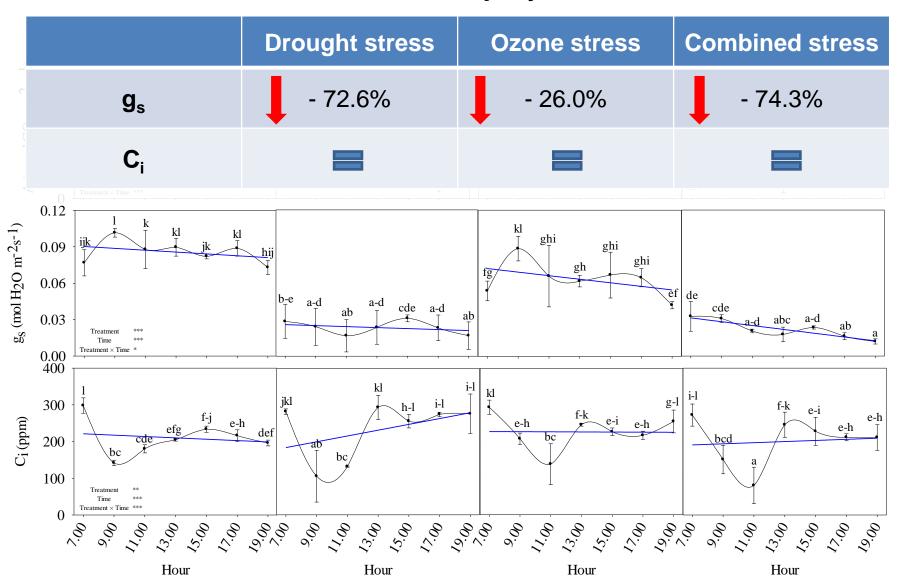



BIOCHEMICAL ANALYSES: •Lipid peroxidation (MDA)

Proline







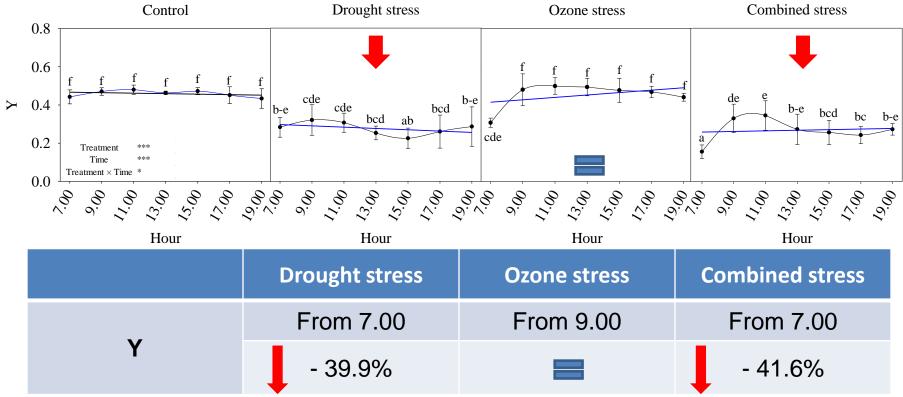
	Drought stress	Ozone stress	Combined stress	
	From the 2 nd week	From the 7 th week	From the 2 nd week	
A	- 65.3%	- 25.6%	- 67.9%	
	From the 2 nd week	From the 7 th week	From the 2 nd week	
g _s	- 65.7%	- 39.6%	- 67.5%	
	From the 7 th week	From the 7 th week	From the 8 th week	
C _i				

- Decrease of net photosynthesis was twinned with stomatal and biochemical limitations (or damage)
- Drought should be considered more harmful than ozone
- Combined stress did not show significant changes in comparison to drought stressed individuals

	Drought stress	Ozone stress	Combined stress
Α	- 65.3%		- 63.7%
\mathbf{g}_{s}	- 72.6%	- 26.0%	- 74.3%
C _i			

Ozone stress: stomatal closure in order to avoid the ozone entry (exclusion)

Chlorophyll a fluorescence (weekly profile)


Chlorophyll a fluorescence (weekly profile)

 F_v/F_m did not show significant change during the exposure (all plants showed values inside the optimal range)

	Drought stress	Ozone stress	Combined stress	
	From the 6 th week	From the 2 nd week	From the 6 th week	
Υ	- 19.6%		- 25.0%	
	From the 6 th week	From the 2 nd week	From the 6 th week	
qP	- 9.4%		- 20.5%	
	From the 4 th week	From the 2 nd week	From the 2 nd week	
qNP	+14,6 %			

- Drought stress: photoinhibition with activation of non-photochemical mechanism, but not PSII photodamage
 - Ozone stress: no effect on PSII performance
 - Combined stress: photoinhibition with no activation of non-photochemical mechanisms, excess energy should be dissipated by other mechanisms, not PSII photodamage

Chlorophyll a fluorescence (daily profile)

- Drought and combined stress: photoinhibition but not PSII photodamage
 - Ozone stress: no effect on PSII performance

Biomass partitioning and growth parameters

Growth parameters	Control	I	Drought s	tress	Ozone st	ress	Combined	stress	P
Total dry weight (g)	41.34 ±11.021	b	17.92 ±3.476	a	36.72 ±6.471	b	18.31 ±0.930	a 📘	**
Shoot/root (g g ⁻¹)	2.11 ±1.013		1.40 ±0.090		0.99 ±0.314		1.36 ±0.110		ns
Roots (g)	14.54 ±2.420	ab	8.30 ±2.643	a	20.16 ±7.234	b	8.16 ±0.075	a	*
Stems (g)	17.53 ±6.852	b	5.80 ±0.702	a	12.09 ±1.470	ab	8,08 ±0.680	a	*
Leaves (g)	9.27 ±2.812	b	3.82 ±1.551	a	4.47 ±0.357	a	2.08 ±0.325	a	**
Leaf number	231.33 ±92.230	b	65.67 ±22.745	a	39.33 ±11.504	a	17.50 ±10.112	a	**
Non-syptomatic old leaves (g)	8.74 ±2.761	С	2.68 ±0.605	ab	4.00 ±0.897	b	0.15 ±0.145	a	***
Symptomatic old leaves (g)	0.00 ±0.000	a	0.93 ±0.810	ab	0.00 ±0.000	a	1.83 ±0.570	b 🚺	**
Non-symptomatic young leaves (g)	0.52 ±0.051		0.21 ±0.330		0.47 ±0.660		0.10 ±0.100		ns

- Drought and combined stress: visible at the whole plant level as reduced growth and at the organ level as leaf symptoms
 - Ozone stress: reductions only in leaves

PDLWP, lipid peroxidation, proline

	PREDAWN LEAF WATER POTENTIAL (Mpa)								
Week	ek Control		Drought stress		Ozone stress		Combined		P
	Contro	'1	Diought s	11 CSS	Ozone stress		stres	tress	
VI	-0.5		-1.4	b	-0.4	٥	-2.9	0	***
VI	±0.03	С	±0.10	D	±0.03	c	±0,20	a	4
VI	-0.5		-0.9		-0.6	ha	-0.8	ah	*
XI	±0.10	С	±0.08	a	±0.21	bc	±0.10	ab	*

 Only drought and combined stresses reduce PDLWP

	MALONDIALDEHYDE (nmol g ⁻¹ FDW)						
Week	Control	Drought stress	Ozone stress	Combined	P		
	Control	Drought stress	Ozone stress	stress			
VI	129.34	127.36	112.80	130.83	n o		
VI	±13.196	±16.054	±7.487	±9.889	ns		
VI	161.88	202.76	189.84	210.81	***		
XI	±10.400 a	±9.558 b	±9.002 a	±1.344 c	4,04,040		

 Only drought and combined stresses act on lipid peroxidation

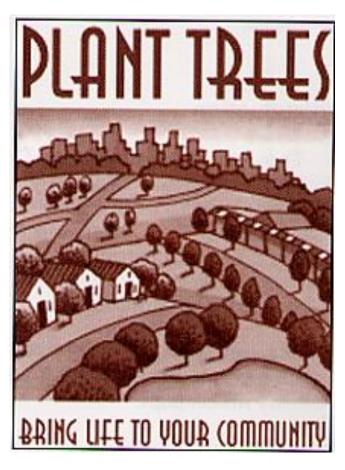
	PROLINE (mg g ⁻¹ FDW)								
Week	Week Control I		Drought s	Drought stress Ozone stress		Combined		P	
							stress	3	
VI	0.09	b	0.19	d 1	0.04	0	0.13	1	***
VI.	±0.007	U	±0.016	a	± 0.004	a	±0.003	С	
VI	0.10		0.13	լ 🕇	0.10		0.18	<u></u>	***
XI	±0.014	a	±0.009	b	±0.006	a	± 0.005	С	7. 7. 7.

 Only drought and combined stresses act on the proline content

In conclusion:

	Drought stress	Ozone stress	Combined stress
Carbon dioxide assimilation rate	•	•	-
Stomatal limitation	YES	YES	YES
Biochemical limitation	YES	YES	YES
Photodamage	NO	NO	NO
Photoinibition	YES	NO	YES
Non-photochemical mechanism	YES	NO	NO
Growth reduction	YES	YES (only in leaves)	YES
Leaf symptoms	YES	NO	YES
Hydric status	•		•
Lipid peroxidation			1
Proline			

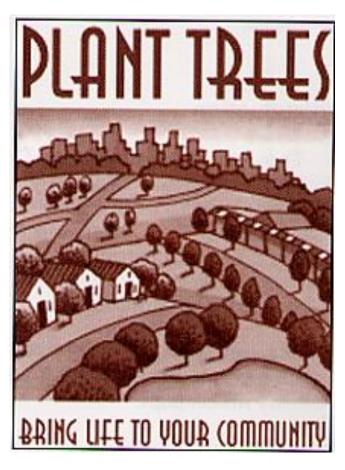
- Drought should be considered more harmful than ozone
- Combined stress did not show significant changes in comparison to drought stressed individuals



Università di Pisa Corso di Dottorato di Ricerca in Scienze Agrarie, Alimentari e Agro-ambientali

PhD Program on Agriculture, Food and Environment

lorenzo.cotrozzi@for.unipi.it



Università di Pisa Corso di Dottorato di Ricerca in Scienze Agrarie, Alimentari e Agro-ambientali

PhD Program on Agriculture, Food and Environment

lorenzo.cotrozzi@for.unipi.it