### OZONE EFFECTS ON TREES WHERE UPTAKE AND DETOXIFICATION MEET

Ludwig De Temmerman

## Introduction

**Ozone is the most important air pollutant** 

- doubled during the past 100 years

- future annual rate: + 0.8-2.5 %

- proportionally more important

## Introduction

- Complex situation in a town environment
  - Abundance of precursors hydrocarbons and  $NO_x$
  - Ozone depletion by NO but synergistic effects with  $NO_2$
  - Multiple stresses for trees
    - Drought stress (dust particles in stomatal opening)
    - Salt induced stress
    - Altered root development
    - Reduced root aeration
    - Soil impaction

# Uptake



Ozone deposition and plant uptake



## **Deposition velocity**

- Experimentally determined by measurement of ozone at several heights above the ground taking into account micrometeorological parameters.
- When NO is present, there is an overestimation of ozone deposition :

 $O_3 + NO \longrightarrow NO_2$ 

- Oxidant deposition  $(O_x = O_3 + NO_2)$
- Example (grass):  $v_d O_3 = 0.6 2.3 \text{ cm s}^{-1}$

 $v_{d} O_{x} = 0.28 - 1.04 \text{ cm s}^{-1}$ 

Duyzer et al. 1983

## Deposition velocity for ozone

- Water surface:
- Bare soil:
- Field crops:
  - maize
  - Soybean
- Mixed forest
- Pine forest

0.01-0.05 cm s<sup>-1</sup> 0.1 cm s<sup>-1</sup>

 $0.2 - 0.7 \text{ cm s}^{-1}$   $0.8 \text{ cm s}^{-1}$   $0.25 - 1.25 \text{ cm s}^{-1}$  $1 \text{ cm s}^{-1}$ 

(Lenschow et al. 1982; Weseley et al. 1981; Galbally & Roy, 1980)

## UPTAKE

- Ozone is taken up through the stomata
- Stomatal closure (altering the ozone uptake)
  - Dry soil
  - High wind speed
  - Low air humidity
  - Ozone effects on the guard cells
  - Effects of other pollutants (acidifcation)
- Stomatal opening (promoting ozone uptake)
  - Warm and humid environment (greenhouse)
  - Abundant irrigation
- Ozone flux : quantity per unit surface and time

Ozone Produces Reactive Oxygen Species



## Reactive oxygen species (ROS)



## **Formation of ROS**





Hippeli & Elstner, 1996

## **Biogenic alkenes**

- Alkenes are emitted by plants
  - Ethylene (stress ethylene)
  - Isoprene and monoterpenes (red spruce, Norway spruce and silver fir)

### Ozonolysis:

• Less soluble ozone is transferred into a highly soluble ROS !!!

Hewitt et al. 1990

## LIPID PEROXIDATION CHAIN REACTION



## LIPID PEROXIDATION













malondialdehyde

Reactive oxygen species in the symplast

- Stress effects (not specific for ozone)
  - formation of  $H_2O_2$
  - generation of superoxide  $(O_2^{-})$
  - formation of hydroxyl radicals (OH<sup>•</sup>)
- Antioxidants
  - GSH Ascorbate carotenoids  $\alpha$ -tocopherol
- Enzymes
  - SOD (superoxide dismutase)
  - catalase
  - peroxidases

### **Oxidative stress**



### **Haber-Weiss reaction**



Haber & Weiss, 1932

## **Defence** systems

- Antioxidants
  - Ascorbate (Vitamin C)
  - $-\alpha$ -tocopherol (Vitamin E)
  - Glutathion (tripeptide composed of cysteine glycine and glutamic acid).
  - Carotenoids
  - Phenolics
- Enzymes
  - Catalase
  - Superoxide dismutase
  - peroxidase

## **Enzymatic defence**

To counteract the Haber-Weiss reaction

- Superoxide dismutase
  - $O_{2} \stackrel{\cdot}{} + O_{2} \stackrel{\cdot}{} + 2H^{+} \longrightarrow H_{2}O_{2} + O_{2}$   $HO_{2} \stackrel{\cdot}{} + HO_{2} \stackrel{\cdot}{\longrightarrow} H_{2}O_{2} + O_{2}$   $HO_{2} \stackrel{\cdot}{} + O_{2} \stackrel{\cdot}{} + H^{+} \longrightarrow H_{2}O_{2} + O_{2}$

- catalase

 $H_2O_2 + H_2O_2 \longrightarrow 2 H_2O + O_2$ - peroxidase

 $\overline{\mathrm{H}_{2}\mathrm{O}_{2}} + \overline{\mathrm{R}\mathrm{H}_{2}} \longrightarrow 2\mathrm{H}_{2}\mathrm{O} + \mathrm{R}$ 

## **Oxidation of ascorbate**



## **Regeneration of ascorbate**



Polle, 1998

## The role of tocopherols





## Alkoxyl radical scavenging



| Alcohol | $\alpha$ -tocopheryl radical | Ascorbate |
|---------|------------------------------|-----------|

## Glutathion



Hagege, 1991

## Antioxidative power

What is the role phenolics as antioxidants?

- Phenolic acids
  - ferulic acid
  - caffeic acid
  - catechol

- ....

- syringic acid
- p-coumaric acid

• Enzymes: peroxydases





**Baudet, 1998; Baucher et al., 1996** 

## Apoplastic phenolics



After Polle, 1998

## Xanthophylls important Carotenoids

- Xanthophyll cycle: enzymatic removal of epoxy groups from violaxanthin and antheraxanthin to create the de-epoxidised xanthophyll zeaxanthin.
- They stimulate energy dissipation by nonphotochemical quenching (chlorophyll fluorescence) to protect against photo inhibition.
- During light stress violaxanthin is converted into zeaxanthin via the intermediate antheraxanthin.
- Acting as lipid protective anti-oxidant

## Xanthophylls important Carotenoids



## Xanthophyll cycle



Lärcher, 1995

## Xanthophyll cycle



Robinson & Osmond 1994

### Antioxidative metabolism in the chloroplasts



Alsher et al., 1998

#### Uptake and detoxification

|                             | Substomatal<br>cavity         | Apoplastic<br>fluid                                                                                       | Plasma-<br>lemma | Symplast                             |
|-----------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|
|                             | <b>Ozonolysis</b><br>ethylene | Dissolved ozone<br>ozonolysis                                                                             | Lipid<br>peroxy- | stress !<br>Lipid                    |
| Ambient<br>air              | isobutene<br>isoprene         | <sup>1</sup> O <sub>2</sub> →                                                                             | dation           | peroxy-<br>dation                    |
| $O_3$                       | $\alpha$ -pinene,             | $\begin{array}{c c} & \cdot OH & \longrightarrow \\ & O_2^{\cdot} & \longrightarrow \\ & H O \end{array}$ |                  | H <sub>2</sub> O <sub>2</sub><br>·OH |
| O <sub>3</sub> <sup>3</sup> |                               | $H_2O_2 \cdots H_2O_2 \rightarrow HO_2 -$                                                                 | ?                | <b>O</b> <sub>2</sub>                |
|                             | 11202                         | + ·OH-                                                                                                    |                  | SOD                                  |
|                             |                               | SOD<br>POD<br>Asc                                                                                         | α-<br>Τος<br>?   | POD<br>CAT<br>Csh                    |
|                             |                               | Phe<br>Gsh                                                                                                |                  | Asc<br>α-Toc                         |

## Lipid peroxidation by NO<sub>x</sub>



#### Ramge et al., 1993

## Ozone sensitivity of trees

- Comparison of visible effects
- RGR of stem diameter and height growth
- Stomatal conductance (g<sub>s</sub>)
- Light saturated photosynthesis (A<sub>sat</sub>)
- Chlorophyll content
- Chlorophyll fluorescence such as

 $F_v/F_m$ : potential quantum yield of photosystem II



Beech Poplar And (% of control (CF)) £ Teet ¢ О •I 1/07/1997 1/08/1997 1/09/1997 1/07/1997 1/08/1997 1/09/1997 g, (% of control (CF)) Ŧ Ó \* 1/07/1997 1/08/1997 1/09/1997 1/07/1997 1/08/1997 1/09/1997 AOT40 NF NF+ NF+ 1830 

K. Bortier et al. / Environmental Pollution 110 (2000) 1-8



## Membrane injury

- Cell death is to some extend less harmful than slight injury. Other cells receive more resources and take over the function.
- Dark respiration is needed for the repair process.
- Plants are more sensitive to ozone damage in Nordic countries because of short nights.











Using EDU as a research tool



## Ozone effects on poplar

**Ethylenediurea or** 

N-[2-(2-oxo-1-imidazolinidyl)ethyl]N'fenylurea



# Flux modeling

Modeling of the ozone flux

 $GO_3 = g_{max} \times g_{pot} \times max\{g_{min}, (g_{light} \times g_{temp} \times g_{vpd})\}$ 

- GO<sub>3</sub>: stomatal conductivity for ozone: nmol O<sub>3</sub> m<sup>-2</sup> s<sup>-1</sup>
- g<sub>max</sub>: average max. GO<sub>3</sub> on the total leaf surface
- g<sub>min</sub>: minimal stomatal conductivity during the day
- Changes in g<sub>max</sub> (realtively between 0-1) due to:
  - Phenological changes : g<sub>pot</sub>
  - PFD: g<sub>light</sub>
  - Temperature: g<sub>temp</sub>
  - Vapor pressure deficit: g<sub>vpd</sub>
- Effective ozone flux (EF)

 $\mathsf{EF}=\mathsf{F}(\mathsf{t})-\mathsf{D}(\mathsf{t})$ 

F(t): absorbed ozone dose on time t

D(t): defence capacity on time t

# Flux based Critical level

| terms                                             | Abb.                       | unit                                     | Description                                                                                                  |
|---------------------------------------------------|----------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Projected leaf<br>area                            | PLA                        | <b>m</b> <sup>2</sup>                    | Leaf surface (one side)                                                                                      |
| Stomatal O <sub>3</sub> flux                      | $\mathbf{F}_{\mathrm{st}}$ | nmol m <sup>-2</sup> PLA s <sup>-1</sup> |                                                                                                              |
| Stomatal O <sub>3</sub> flux<br>above threshold Y | F <sub>st</sub> Y          | nmol m <sup>-2</sup> PLA s <sup>-1</sup> | Stomatal O <sub>3</sub> flux above a threshold of Y<br>nmol m <sup>-2</sup> PLA s <sup>-1</sup>              |
| Phytotoxic Ozone<br>Dose (above<br>threshold Y)   | POD <sub>Y</sub>           | mmol m <sup>-2</sup> PLA                 | Accumulated stomatal O <sub>3</sub> flux above<br>threshold of Y (nmol m <sup>-2</sup> PLA s <sup>-1</sup> ) |
| Flux based<br>Critical Level for<br>ozone         | CLe <sub>f</sub>           | mmol m <sup>-2</sup> PLA                 | Accumulated flux above a threshold flux<br>Y over over a period for day light hours.                         |

## Flux based critical levels for ozone

|                 | Critical level – O <sub>3</sub> flux CLe <sub>f</sub> |                      |  |
|-----------------|-------------------------------------------------------|----------------------|--|
|                 | Accumulated flux                                      | Effect (% reduction) |  |
| Spruce          | $POD_1 = 8 \text{ mmol } \text{m}^{-2}$               | Biomass (2%)         |  |
| Birch and beech | $POD_1 = 4 \text{ mmol } \text{m}^{-2}$               | Biomass (4%)         |  |

## **Effective ozone flux**

# $\mathsf{EF}=\mathsf{F}(\mathsf{t})-\mathsf{D}(\mathsf{t})$

- EF= effective ozone flux
- F(t) = absorbed dose or uptake into the leaf at a given point in time
- D(t) = defensive response at that time

 D(t) is a function of photosynthesis since it provides the plant with photosynthate needed for defensive processes

Musselman & Massman, 1999

#### Antioxidative Capacity: Function



### **Apoplastic Antioxidants**



#### Problems:

- Relative importance of antioxidants unkown
- Interdepedence unkown
- Total Antioxidative power unkown
- Turnover rate of antioxidants unkown

#### Conclusions

The effective ozone flux is a very promising issue to determine the risk for ozone exposure in forests

Models to determine stomatal ozone uptake give already very good results but need to be further developed and tested

Much more research is needed to determine the defensive response because of its complexity

The ant oxidative power of phenolic acids is not well known

Turnover rate of antioxidants is unknown

•Constitutive levels of antioxidants do not determine resistance