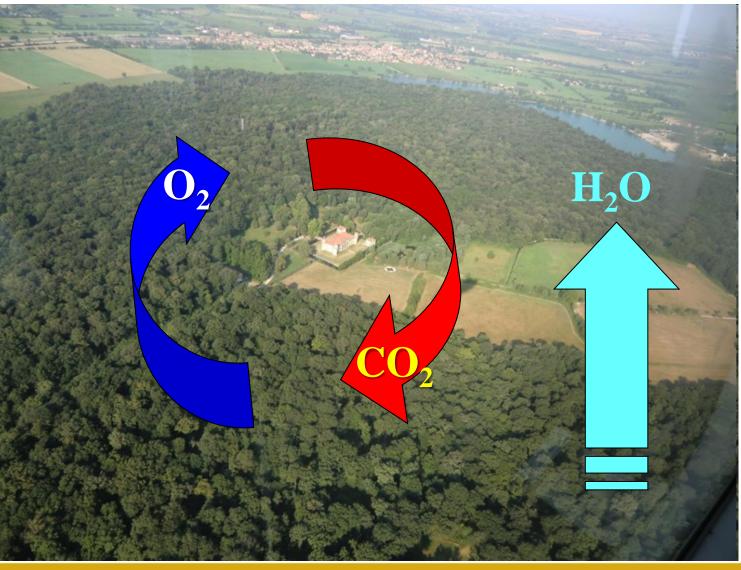


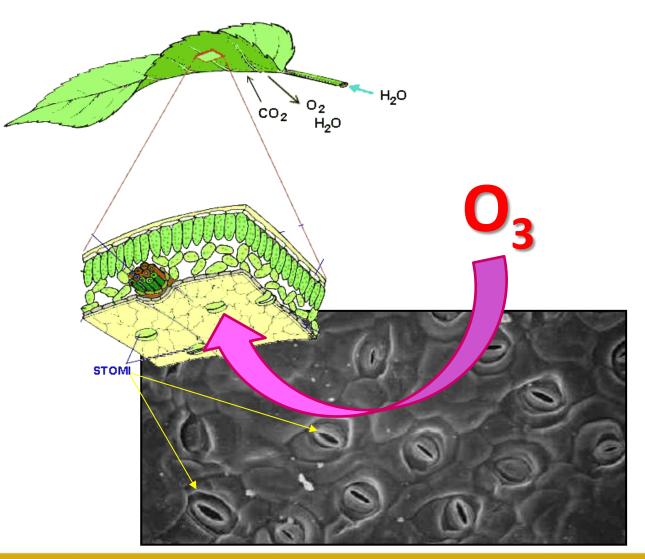
And Vegetation? Uptake and effects of a paradigmatic pollutant on plants

Gerosa G.¹, Marzuoli R.¹, Monga R.², Finco A.¹

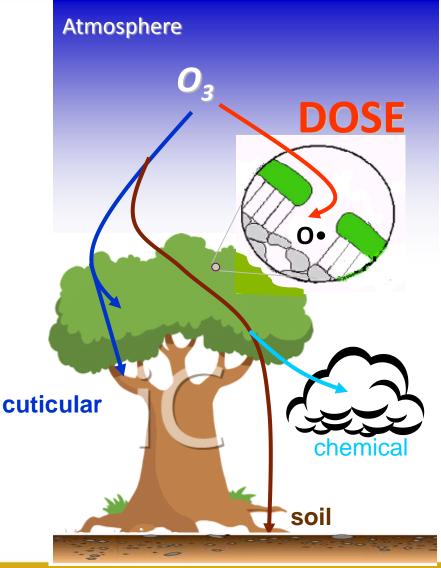
¹ Università Cattolica del S.C., Brescia, Italy
 ² Università degli Studi di Milano, Milan, Italy



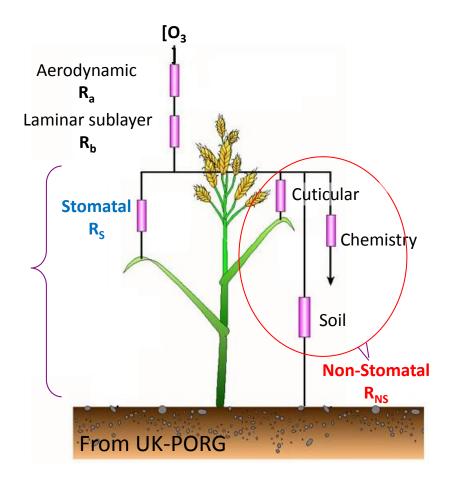
Gaseous air pollutants uptake by plants

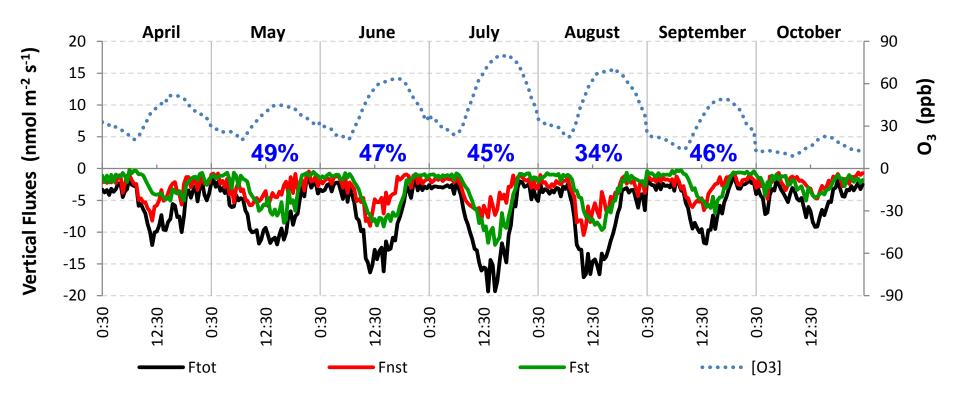

Ecosystems exchange gasses with the atmosphere

Key role of stomates in plants' gas exchange

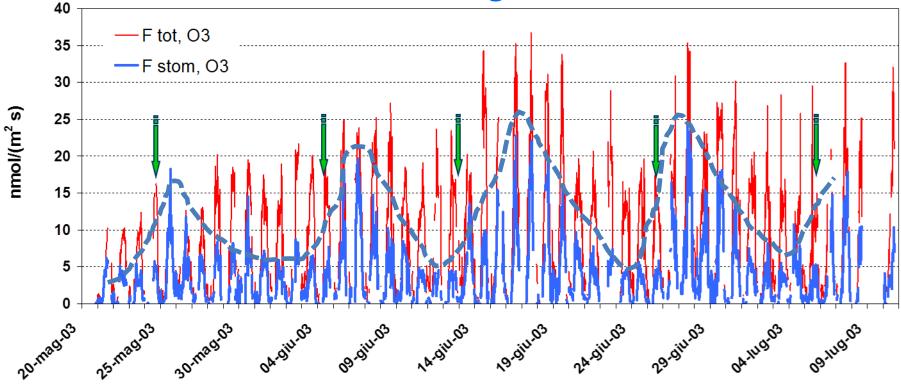

Measurements of gas exchange at ecosystem level

Ozone deposition pathways to a forest ecosystem

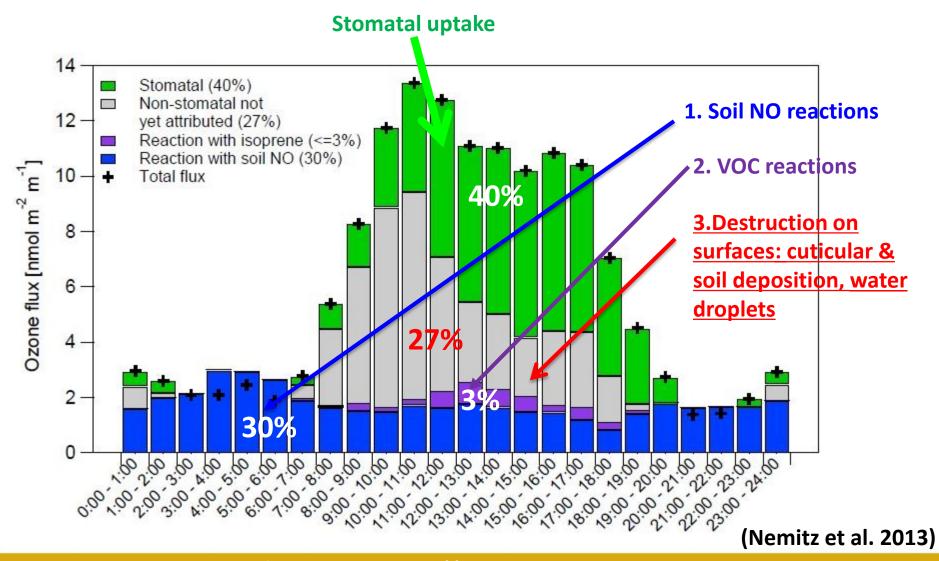

O₃ uptaken through stomata are only a part of the ozone deposited to the ecosystem


Derivation of the bio-available O_3 conc. and the ozone dose taken up through stomata

Stomatal uptake at our forest ecosystem

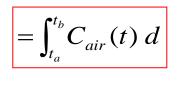

Nearly 50% of the total ozone flux

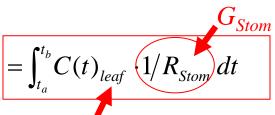
The stomatal *uptake* is driven by the water availability for plants


Onion field, Voghera (PV) 5 irrigations

Gerosa et al. 2007 Comparison of Different Algorithms for Stomatal Ozone Flux Determination from Micrometeorological Measurements. *Water Air Soil Pollution* 179:309–321

Relative importance of the other deposition processes




Quantify the ozone dose, the 1st determinant of the effects: EXPOSURE and the FLUX concepts

Definitions

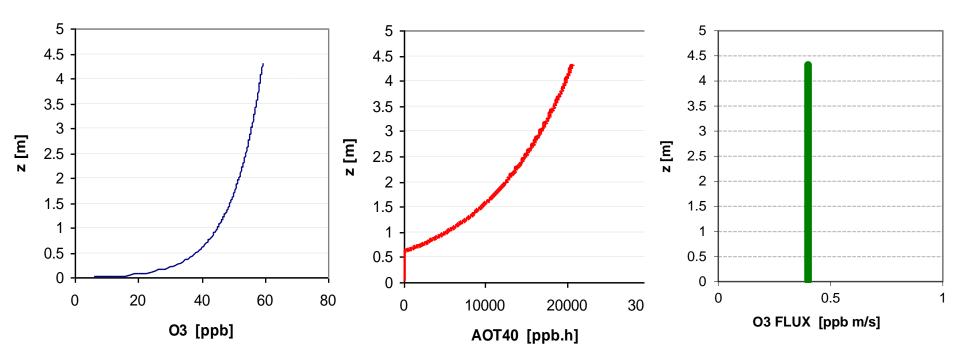
Indicators $AOT 40 = \sum_{\substack{\forall C(t) > 40 \text{ ppb} \\ \forall Glob.Rad \ge 50W/m^2}} \left| C_{air}(t) - 40 \right| \Delta t$

$$POD_{Y} = \int_{t_{a}}^{t_{b}} \left| \underbrace{C(t)_{leaf} \cdot G_{stom}(t)}_{F_{Stom}} Y \right| dt$$

more biologically sound!

$$\forall F_{ST}(t) > Y$$

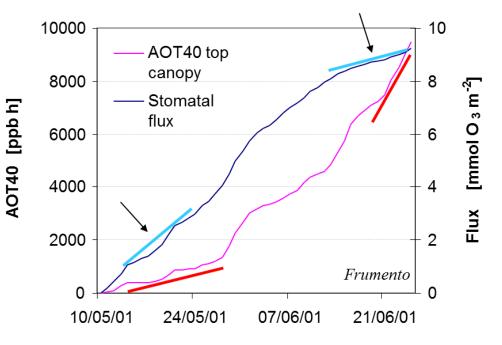
Apparently differences seem to be "only" on G_{stom} and O_3 meas. height...

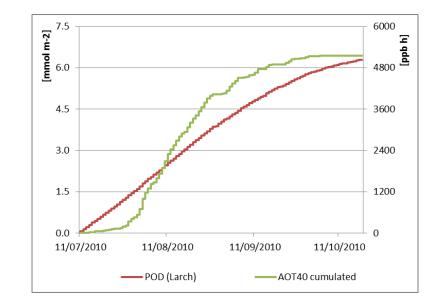

Exposure	vs	Flux
 simple measurements 		 sofisticated measurements
• <u>easy</u> to calculate		 <u>difficult</u> to calculate (requires G_{stom}, often modeled)
 it depends on the height of measurements 		 It does not depends on the height of measures
 it does not dependent on the receptor physiolog 	gy:	 it depends on the receptor physiology:

• it d it depends only on air chemistry

AOT40 depends on the measurement height, while FLUX does not

AOT40 strongly depends on the measurement height (above the canopy)...


... while flux is independent of the measurement height (=Flux constant)



Exposure and stomatal flux behaves differently along the growing season

Wheat Comun Nuovo (BG)

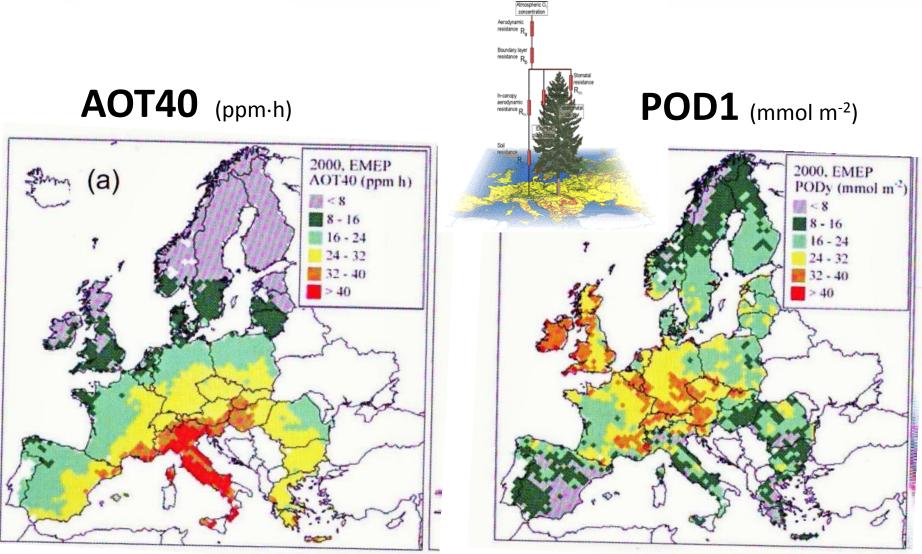
Larix forest Valcamonica (BS)

Gerosa et al. 2003. Micrometeorological determination of time-integrated stomatal ozone fluxes over wheat: a case study in Northern Italy. *Atmospheric Environment*

Gerosa et al. 2013. Ozone Fluxes to a Larch Forest Ecosystem at the Timberline in the Italian Alps. Intech book, Management Strategies to Adapt Alpine Space Forests to Climate Change Risks

The exposure index adoped in EU legislation (AOT40) does not allow to estimate the phytotoxical ozone dose

Esposures and Doses in comparison

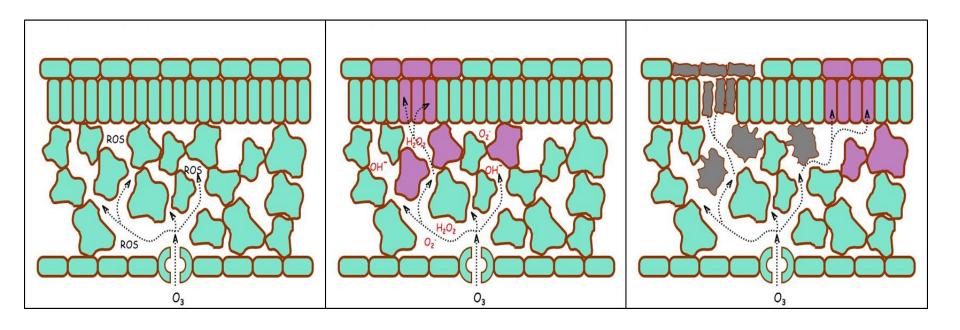

		FLUX	AOT40	
		Stomatal	top canopy	At z=2m meas.height
		Sto	omatal	
Сгор	period	m mol m-2 fra	action ppb h	ppb h
Triticum aestivum	anthesis-harvest	9,237 59	9.7% 9482	12152
Hordeum vulgaris	Anthesis-harvest	8,701 51	1.4% 2566	5755
Glycine max	Flowering-harvest 200	01 1,667 24	4.1% 2256	6730
Glycine max	Flowering-harvest 200	02 7,439 48	3.0% 1334	4092

Exposure (AOT40) is not able to predict the toxicological ozone Dose (and the resulting effects...)

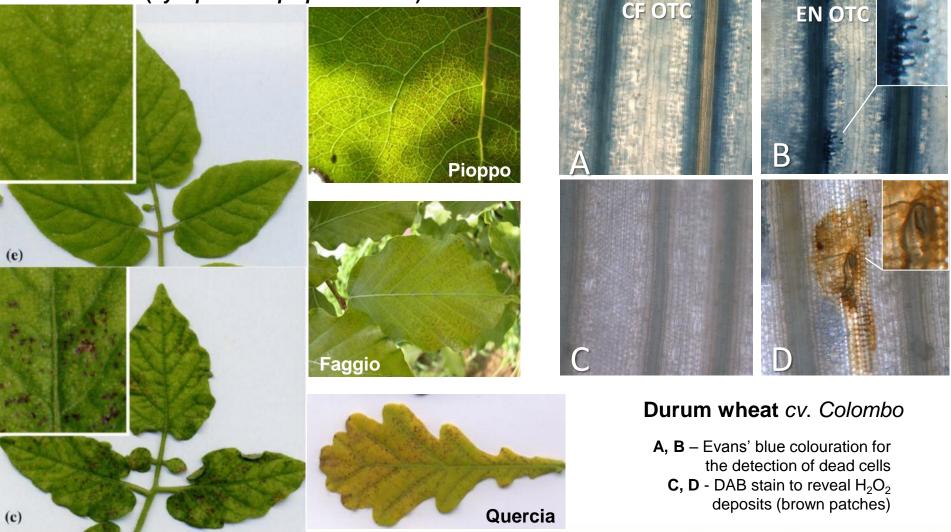
UE and UN/ECE critical level for crops: **3000** ppb.h (AOT40)

... and this penalises the Mediterranean countries, first of all Italy

Effects on plants



Sperimental facilities to study the effects of air pollutants on vegetation


Ozone penetration in leaves and ROS formation, the ultimate responsible of the plant injury

Leaf visible injuries

Tomato (Lycopersicon pinpinellifolium)

The effects chain

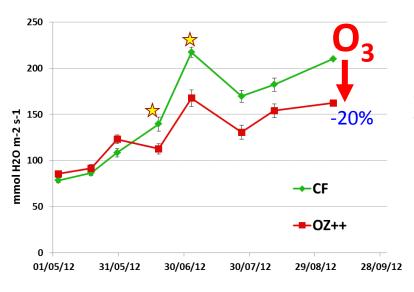
The net result

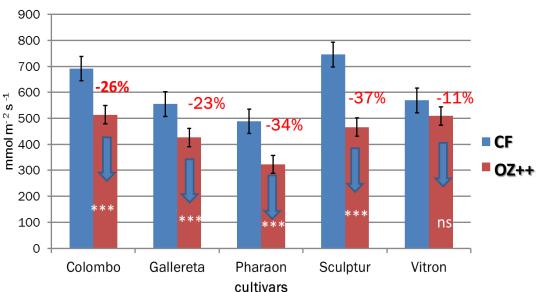
At *plant* level this could result in

- 1. appearence of **visible sympoms**:
 - leaf injuries
 - increased crown trasparency, alterated ramification
- 2. physiological and phenological imbalances, eg:
 - alteration of CO₂ assimilation
 - reduction of the root traslocation of photosinthate
 - flowering alteration, anticipated leaf senescence
- 3. a generalised **decrease of net-productivity**:
 - decreased growth,
 - lower yield (grain or fruits),
 - alteration of the quality of the products

The net result

At *community* and *ecosystem* level this could result in


- 4. Alteration of **community structure**, e. g.:
 - decrease of abbundance of sensitive species
 - reduction of biodiversity
- 5. Alteration of **functionality**
 - imbalance of C cycle (increased respiration...)
 - Imbalance of N and nutrients cycles (e.g. effect on soil community)
- 6. Decrease of **resistance** and **resilience** to other stresses

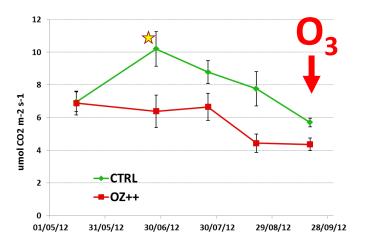


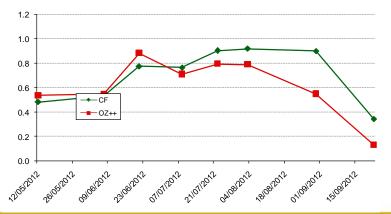
Negative effects at physiological level Reduction of STOMATAL CONDUCTANCE

Stomatal conductance

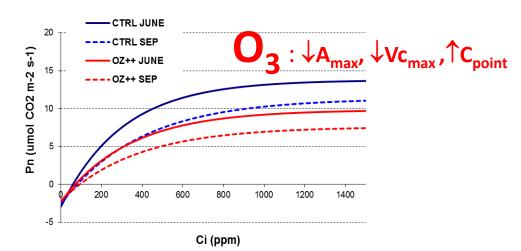
Quercus robur

Air Week 2014, Università di Brescia, Brescia (I), 10 November 2014


Triticum durum


Negative effects at physiological level Reduction of PHOTOSYNTHESYS

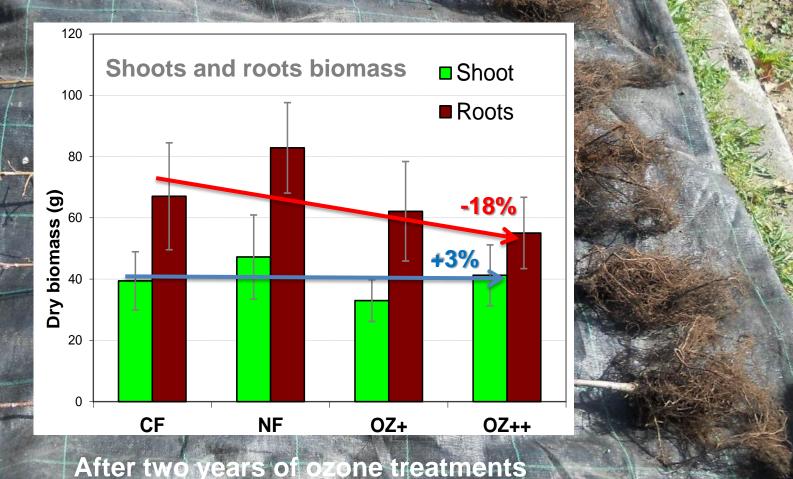
Quercus robur


Net Photosynthesis

Photosystems efficiency (PI) Hornbeam 2012

Carbon assimilation efficiency

Vcmax	-30%
Amax	-31%
Comp. Point	+17%
Dark respiration	-20%



Negative effects at productivity level Reduction of PLANT BIOMASS

Quercus robur 2013

Tomato

UNIVERSITÀ

del Sacro Cuore

				Total yield		Marketable yi	eld	
	Ozone Treat.	AOT40 ppb.h	AF _{ST} O ₃ mmolm ⁻² s ⁻¹	Fruits fresh weight (g)	Fruits number	Fruits fresh weight (g)	Fruits mean fresh weight (g)	Fruits number
Oxheart								
	CF	924	20.57	10333.0	90	8968.6	119.6	75
	NF	8162	36.63	6621.6	56	6199.6	119.2	52
Difference				-35.90%*	-37.77*	-30.87%**	-0.33%	-30.66%

Gerosa et al., 2008. Ozone effects on fruit productivity and photosynthetic response of two tomato cultivars in relation to stomatal fluxes. *Italian Journal of Agronomy.*

Bean

Crop yield popen-top chambers (OTC-F and OTC-NF, respectively)

Ozone exposure	Average seed weight/plant (g)	Average seed weight/pod (g)	100-Seed weight (g)
OTC-F OTC-NF	12.39 ± 5.13 7.36 ± 3.99 -40%		$\begin{array}{c} 43.09 \pm 2.432 \\ 43.35 \pm 2.073 \end{array}$
OTC(T)	ns	ns	ns
Т	***	***	ns

AOT40: CF-OTC = 600, NF-OTC = 5'000 ppb*h AFst0: CF-OTC = 9, NF-OTC = 21 mmol O₃m⁻²

Gerosa et al. 2009. A flux-based assessment of the effects of ozone on foliar injury, photosynthesis, and yield of bean (*Phaseolus vulgaris L. cv.* Borlotto Nano Lingua di Fuoco) in open-top chambers. *Environmental Pollution.*

Table 4

Negative effects at productivity level PHENOLOGICAL imbalances

creatment factor;

Reduction of flowering

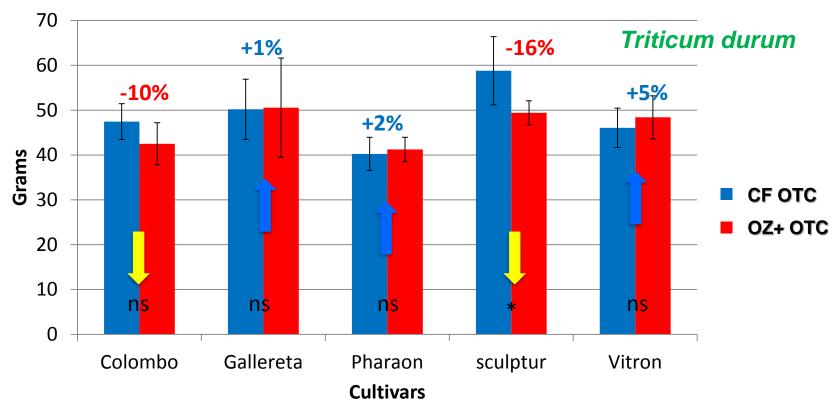
Less pods = less flowers

Crop yield parameters of bean (*Pheeolus vulgaris L*) plants grown in charcoal-filtered and non-filtered open-top chambers (OTC-F and OTC-NF, respectively)

Ozone exposure	No. of pods/ plant	No. of seeds/ plant	No. of seeds/ pod	Average pod weight/plant (g)	Average seed weight/plant (g)	Average seed weight/pod (g)	100-5 W
OTC-F	6.22 ± 2.03	27.07 ± 9.85	4.38 ± 1.22	3.77 ± 1.53	12.39 ± 5.13	1.82 ± 0.66	.52
OTC-NF +O3	4.46 ± 1.90 - 30	18.06 ± 8.07	4.05 ± 1.09	2.31 ± 1.27	7.36±3.99 -4	$)\%^{1.63\pm0.60}$ -10 [°]	2.073
OTC(T)	ns	ns	ns	ns	ns 🔹	ns	
Т	ns	***	***	***	***	***	.is

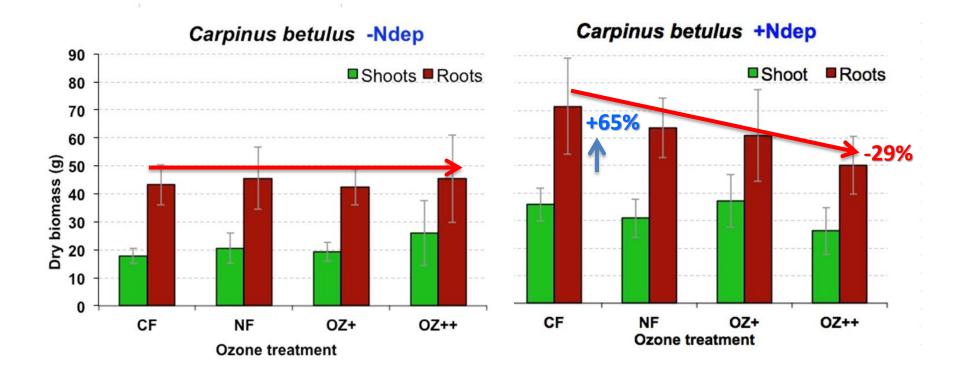
Each value represents the mean \pm SD of 140 plants. The results of the GLMM analysis are presented at the bottom of the table. OTC(*T*): OTC next *T*: treatment (ns: *P* > 0.05; **P* \leq 0.05; ***P* \leq 0.01; ****P* \leq 0.001).

The main determinant of plant response is genetics


There is a species variability in plants' response to tropospheric ozone

Sensitive species	Intermediate sp.	Tolerant species
Bean	Durum wheat	Holmoak
Soybean	Scots pine	Arbutus unedo
Alfalfa	beech	Hornbeam
Tomato	Oak	
Lettuce		
Winter wheat		
Poplar		
Ash		

The main determinant of plant response is genetics

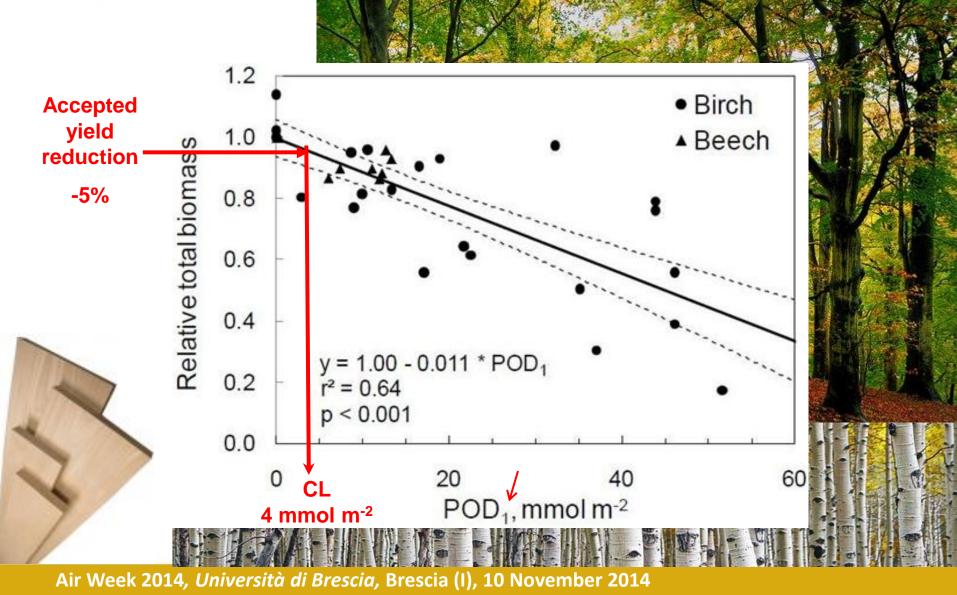

But there is an intra-specific variability too ...

Grain weight (g)

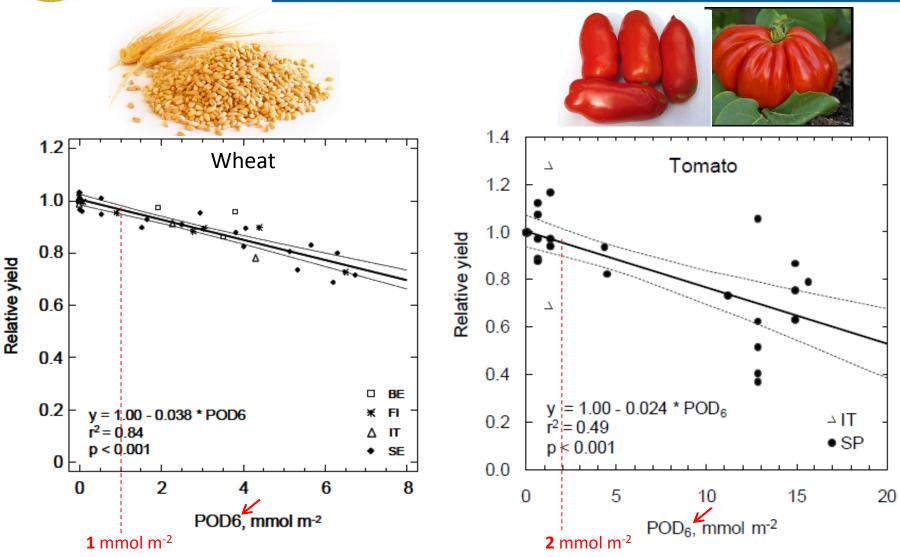
The interaction with other pollutants may alter plant response to a given pollutant. Importance of a multi-pollutant approach

N-deposition increases Hornbeam sensitivity to ozone

Air Week 2014, Università di Brescia, Brescia (I), 10 November 2014


Dose-response relationships and risk assessment

3.


The dose metric and the risk assessment in the UN/ECE framework

Flux based dose-effect relationships for crop yield

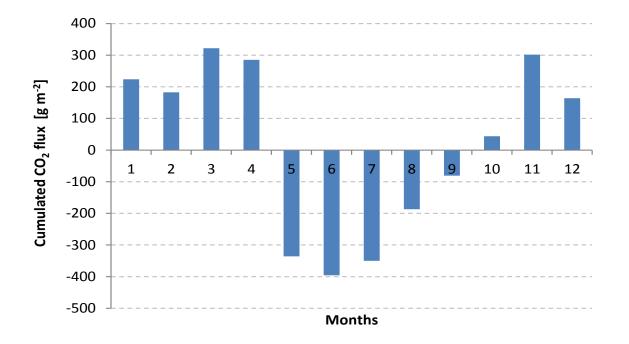
UN/ECE Critical levels for STOMATAL DOSE

(Mapping Manual, 1994 rev. 2010, update 2011)

(a) Flux-based critical levels					
Receptor	Effect (per cent reduction)	Parameter	Critical level (mmol m ⁻² PLA)	Scientific basis in Section	
Wheat	Grain yield (5%)		1	3.5.2.1	
Wheat	1000 grain weight (5%)		2	3.5.2.1	
Wheat	Protein yield (5%)	POD ₆	2	3.5.2.1	
Potato	Tuber yield (5%)	POD ₆	5	3.5.2.1	
Tomato	Fruit yield (5%)	POD ₆	2	3.5.2.1	
Norway spruce	Biomass (2%)	POD ₁	8	3.6.2.1	
Birch and beech	Biomass (4%)	POD ₁	4	3.6.2.1	
Productive grasslands (clover)	Biomass (10%)	POD ₁	2	3.7.2.1	
Conservation grasslands (clover)	Biomass (10%)	POD ₁	2	3.7.2.1	
Conservation grasslands (<i>Viola</i> spp), provisional	Biomass (15%)	POD ₁	6	3.7.2.1	

Conclusion One future challenge and a provocation

4.


A challange

• Assess ozone effects on **adult plants** and mature ecosystems

The lack of closure of the CO₂ budget may suggest that the ecosystem is under stress...

Carbon balance on 12 months = + 173 g/m2

Our mature forest ecosystem resulted a carbon emitter instead of a carbon sink...

- Assess ozone effects on adult plants and mature ecosystems
- Importance of long terms surveys and pluriannualexperiments

- Assess ozone effects on adult plants and mature ecosystems
- Importance of long terms surveys and pluriannualexperiments
- Does EC really want to protect ecosystems from air pollution?
- Does anybody really cares of agriculture in EC?

Practically there are **no funds** for experimental work....

Thank you for your attention

giacomo.gerosa@unicatt.it